Detection Challenge Results

Detection challenge results are presented below. The plot results of detectors can be found here.

The Precision-Recall curve of the submission can be drawn compared to the state-of-the-art detectors here.

Method Overall Easy Medium Hard Cloudy Night Rainy Sunny Speed Environment
1 SpotNet 86.80% 97.58% 92.57% 76.58% 89.38% 89.53% 80.93% 91.42% 14 fps (python) CPU:Intel i7-6850K 3.6GHZ, RAM:32GB, GPU:GTX1080 Ti
Hughes Perreault, Guillaume-Alexandre Bilodeau, Nicolas Saunier and Maguelonne Héritier. SpotNet: Self-Attention Multi-Task Network for Object Detection. arXiv 2020. Polytechnique Montreal, Genetec, Canada
2 SSD_VDIG 82.68% 94.60% 89.71% 70.65% 89.81% 83.02% 73.35% 88.11% 2 fps GPU:2x Titan X
PKU & Alibaba AI Labs
3 ME-Net 80.76% 94.56% 85.90% 69.72% 87.19% 80.68% 71.06% 89.74% 14 fps (Python) CPU:8x Intel i7-4790 3.6GHZ, RAM:15.5GB, GPU:GTX1080
CASIA & Visystem
4 HAVD 80.51% 94.48% 86.13% 69.02% 87.28% 82.30% 69.37% 89.71% 2.1 fps CPU:2x Intel Xeon E5-2650v4 2.4GHZ, GPU:Titan X
THU CV-AI Lab
5 FG-BR_Net 79.96% 93.49% 83.60% 70.78% 87.36% 78.42% 70.50% 89.89% 10 fps (Python) GPU:Tesla M40
Zhihang Fu, Yaowu Chen, Hongwei Yong, Rongxin Jiang, Lei Zhang and Xian-Sheng Hua. Foreground Gating and Background Refining Network for Surveillance Object Detection. TIP 2019.
6 DCN 79.85% 93.85% 85.07% 69.00% 85.55% 82.38% 68.95% 89.08% 8 fps (Python) CPU:2x Intel Xeon E5-2650v4 2.4GHZ, GPU:Titan X
Anonymous submission
7 HAT 78.64% 93.44% 83.09% 68.04% 86.27% 78.00% 67.97% 88.78% 3.6 fps (C++,Python) GPU:Titan X
Shuzhe Wu, Meina Kan, Shiguang Shan and Xilin Chen. Hierarchical Attention for Part-Aware Face Detection. IJCV 2019.
8 GP-FRCNNm 77.96% 92.74% 82.39% 67.22% 83.23% 77.75% 70.17% 86.56% 4 fps (C++, Python) CPU:Intel(R) Xeon(R) CPU E5-2690v3 2.6GHZ, RAM:256GB, GPU:K40
Sikandar Amin, Fabio Galasso. Geometric Proposals for Faster R-CNN. AVSS 2017.
9 CSP 77.67% 93.65% 83.67% 64.54% 86.81% 80.63% 61.39% 89.66% 4 fps (C++, Python) CPU:Intel(R) Xeon(R) CPU E5-2690v3 2.6GHZ, RAM:256GB, GPU:K40
Wei Liu, Shengcai Liao, Weiqiang Ren, Weidong Hu, and Yinan Yu. High-level Semantic Feature Detection: A New Perspective for Pedestrian Detection. CVPR 2019.
10 RTN 74.15% 91.52% 79.16% 61.73% 77.02% 77.20% 65.27% 84.14% 19.61 fps (C++) 2x Intel Xeon E5-2620v4, RAM:128GB,GPU:GTX1080
Anonymous submission
11 HPNDFCN 71.56% 93.51% 78.00% 55.62% 78.84% 79.37% 57.22% 84.92% 5 fps Intel(R) i5 2 core 2.10GHz, RAM:128GB,GPU:GTX1080Ti
Anonymous submission
12 R-FCN 69.87% 93.32% 75.67% 54.31% 74.38% 75.09% 56.21% 84.08% 6 fps (Python) 2x Intel Xeon E5-2650v4, RAM:128GB,GPU:TitanX
Dai, J., Li, Y., He, K., & Sun, J. R-fcn: Object detection via region-based fully convolutional networks. In NeurIPS 2016.
13 ASDN-EB 69.60% 89.87% 75.09% 55.69% 75.27% 74.62% 54.85% 84.79% 7.69 fps CPU: 2x Intel Xeon E5-2650v4 2.4GHZ, GPU: Titan X
Anonymous submission
14 EB 67.96% 89.65% 73.12% 53.64% 72.42% 73.93% 53.40% 83.73% 10.00 fps (C++) 1x GPU:TitanX
Li Wang, Yao Lu, Hong Wang, Yingbin Zheng, Hao Ye, Xiangyang Xue, Evolving Boxes for Fast Vehicle Detection. ICME, 2017.
15 LateralCNN 67.25% 89.56% 73.59% 51.61% 69.11% 74.36% 55.77% 78.66% 21.47 fps Intel(R) i7-6800K 6 core 3.40GHz, RAM:32GB,GPU:TitanX
Anonymous submission
16 NANO 63.01% 80.33% 68.04% 50.73% 67.00% 62.20% 55.89% 73.89% - -
Anonymous submission
17 Faster R-CNN 58.45% 82.75% 63.05% 44.25% 66.29% 69.85% 45.16% 62.34% 11.11 fps (C++) 1x GPU:TitanX
Anonymous submission
18 YOLOv2 57.72% 83.28% 62.25% 42.44% 57.97% 64.53% 47.84% 69.75% - 2x Intel Xeon E5-2620v4, RAM:128GB,GPU:GTX1080
Anonymous submission
19 RN-D-from-scratch 54.69% 80.98% 59.13% 39.23% 59.88% 54.62% 41.11% 77.53% 12 fps (Python) Intel i7-6850K @3.60GHz, RAM:32GB, GPU:GTX 1080 Ti
H. Perreault, G.-A. Bilodeau, N. Saunier and P. Gravel. Road User Detection in Videos. In arXiv, 2019.
20 CompACT 53.23% 64.84% 58.70% 43.16% 63.23% 46.37% 44.21% 71.16% 0.22 fps (Matlab,C++) 2x Intel Xeon E5-2470v2 @2.40GHz, RAM:64GB, GPU:Tesla K40
Z. Cai, M. Saberian, and N. Vasconcelos. Learning complexity-aware cascades for deep pedestrian detection. In ICCV, 2015. [code]
21 R-CNN 48.95% 59.31% 54.06% 39.47% 59.73% 39.32% 39.06% 67.52% 0.10 fps (Matlab,C++) 2x Intel Xeon E5-2470v2 @2.40GHz, RAM:64GB, GPU:Tesla K40
R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587, 2014. [code]
22 ACF 46.35% 54.27% 51.52% 38.07% 58.30% 35.29% 37.09% 66.58% 0.67 fps (Matlab,C++) 2x Intel Xeon E5-2470v2 @2.40GHz, RAM:64GB
P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for object detection. In TPAMI, 36(8):1532-1545, 2014. [code]
23 SA-FRCNN 45.83% 73.93% 49.00% 30.76% 49.97% 52.30% 33.39% 55.04% - -
Anonymous submission
24 DPM 25.70% 34.42% 30.29% 17.62% 24.78% 30.91% 25.55% 31.77% 0.17 fps (Matlab,C++) 4x Intel Core i7-6600U @2.60GHz, RAM:8GB
P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. In TPAMI, 32(9):1627-1645, 2010. [code]